Investigation of Mechanical Properties of Lithium-Based Geopolymer Composites Reinforced with Basalt Fibers
Authors
Abstract:
Recently, geopolymer binders have been considered because of low cost, simple processes for synthesis and many raw materials in nature. Geopolymer with brittle nature does not have high strength and cannot be used alone for structural materials. Therefore, to use in different structures, the composite which is reinforced with fibers such as carbon, glass, basalt, etchasbeen used. In this research, influence of different parameters such as firing temperature and weight fraction of continuous basalt fiber on strength of lithium-based geopolmer composites reinforced by basalt fibers was studied. Firstly, raw materials for geopolymer preparation were calcined. Then, geopolymer matrix with specific molar ratio was made with three different weight percent of basalt fiber. The Molds were put in an oven and after that the composites were taken out of the molds. Then the samples were cured at three different temperatures. After heat treatment, C-MOR of composites was tested and flexural strength and fracture energy for different samples were calculated. The results showed that basalt fiber composites at 200˚C had high strength, but by increasing temperature the strength decreased. Also, Fracture energy of composites at 200˚C was higher than other temperatures.
similar resources
investigation of thermal comfort properties of woven sport fabric using blend of estabragh fibers
امروزه لباس در نظر ورزشکاران و کسانی که برای اوقات فراغت خود و یا برای رسیدن به اندامی متعادل، ورزش می کنند؛ بسیار با اهمیت است. احساس مطلوب از لباس در زمره خصوصیات راحتی پوشش می باشد. خصوصیات انتقال رطوبت لباس، در ارزیابی راحتی حسی و حرارتی منسوجات تولید شده از آن ها بسیار مهم است. هدف از این تحقیق، معرفی پارچه جدید است که متشکل از الیاف استبرق با خواص منحصر به فرد می باشد. استبرق لیف طبیعی تو...
Mechanical Properties of the Palm Fibers Reinforced HDPE Composites
Natural fibers are used in polymer composites to improve mechanical properties to replace inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile and flexural behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was treated by mercerization treatments to improve the we...
full textthe strain rate effect on bending properties of basalt and carbon fibers reinforced phenolic composites
in this study, the strain rate effect on the bending properties of fiber reinforced composites for three types of polymer composites namely phenolic resin reinforced by woven basalt fibers, woven carbon fibers, and woven basalt/ woven carbon fibers at a total volume fraction of approximately 35% has been determined. flexural tests have been conducted at low range of strain rates included 0.03 m...
full textAccelerated Heat Aging Study of Phenolic/Basalt Fiber Reinforced Composites
One of the greatest impediments to use polymer-matrix composites is their susceptibility to degradation when exposed to the elevated temperatures and the limited knowledge on the thermal and mechanical properties of these composites at such temperatures. The objective of this study is to evaluate the effects of accelerated heat aging on the tensile properties of the Woven Basalt/Phenolic (WBP) ...
full textBasic Mechanical Properties of Basalt Fiber Reinforced Recycled Aggregate Concrete
In order to study the basic mechanical properties of basalt fiber reinforced recycled aggregate concrete, the concrete mix ratio, the length and the volume mixing ratio of chopped basalt fiber yarn are designed for changing factors. A total of 324 specimens have been completed for this investigation. The compressive strength, splitting tensile strength, elastic modulus and axial compressive str...
full textNanoscaled Mechanical Properties of Cement Composites Reinforced with Carbon Nanofibers
This paper reports the effects of carbon nanofibers (CNFs) on nanoscaled mechanical properties of cement composites. CNFs were added to cement composites at the filler loading of 0.2 wt % (by wt. of cement). Micrographs based on scanning electron microscopy (SEM) show that CNFs are capable of forming strong interfacial bonding with cement matrices. Experimental results using nanoindentation rev...
full textMy Resources
Journal title
volume 1 issue 3
pages 43- 52
publication date 2013-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023